

BWZ NachhilfeSicher durch die Prüfung!

Formelsammlung für WU Fachprüfung Finance

1 Lineare Finanzinstrumente

Allgemein

	Bid (auf Deutsch: Geldkurs)	Ask/Offer (auf Deutsch: Briefkurs)
(Beispiel) Quotierung	78	80

Es gilt immer *Quotierung* ^{Bid} < *Quotierung* ^{Ask}. Die Finanzinstitution die in Markt handeln und die Bid-Ask Spanne verdienen nennt man Market-Maker (MM), da sie Liquidität der Markt geben und daher den Markt "machen". Die Marktteilnehmer die die Bid-Ask Quotierung akzeptieren müssen nennt man Market-User (MU). Ein MU zahlt den Ask-Preis wenn er/sie den Finanztitel kauft und erhält Bid-Preis pro verkaufte Stück wenn er/sie den Finanztitel verkauft.

Notation

MMY	 Money Market Yield; Geldmarkt ⇒ Laufzeiten bis zu einem Jahr
BEY	 Bond Equivalent Yield; Kapitalmarkt \Rightarrow Laufzeiten über einem Jahr
R_T^{Ask}	 Ask Quotierung der p.a. Zinssatz für eine Bindungsdauer von T
R_T^{Bid}	 Bid Quotierung der p.a. Zinssatz für eine Bindungsdauer von T

Diskontierungsfaktoren und Tageszählungskonventionen

Tageszählungskonvention actual/360 (üblich)	a)	$T_{act/360} = rac{Anzahl\ der\ Tage\ bis\ zur\ Fälligkeit}{360}$
Tageszählungskonvention actual/365 (bei GBP)	,	$T_{act/365} = \frac{Anzahl\ der\ Tage\ bis\ zur\ Fälligkeit}{365}$
Tageszählungskonvention ohne Datumsangaben	c)	$T_{o.D.} = rac{Anzahl\ der\ Monate\ bis\ zur\ Fälligkeit}{12}$
Bid Diskonierungsfaktor bei MMY Quotierung	d)	$P_{T,MMY}^{Bid} = \frac{1}{1 + R_T^{Bid} \cdot T}$
Ask Diskonierungsfaktor bei MMY Quotierung	e)	$P_{T,MMY}^{Ask} = \frac{1}{1 + R_T^{Ask} \cdot T}$
Bid Diskonierungsfaktor bei BEY Quotierung	f)	$P_{T,BEY}^{Bid} = \frac{1}{(1 + R_T^{Bid})^T}$
Ask Diskonierungsfaktor bei BEY Quotierung	g)	$P_{T,BEY}^{Ask} = \frac{1}{(1 + R_T^{Ask})^T}$

Die Tageszählungskonventionen act/360 und act/365 werden für Beispiele mit Datumsangaben verwendet, ansonsten werden alle Monate im Jahr gleich gewichtet $(T_{o.D.})$.

Forward Rate Agreement (FRA)

$$f(T,T+h)^{Bid}$$
 ... Der vereinbarte Bid Terminzins $f(T,t+h)^{Bid}$ beginnend von T und Fälligkeit von $T+h$.

 $f(T,T+h)^{Ask}$... Der vereinbarte Ask Terminzins $f(T,t+h)^{Ask}$ beginnend von T und Fälligkeit von $T+h$.

 $r(T,T+h)^{Bid}$... Der herrschende Bid Kassazins $r(T,t+h)^{Bid}$ zum Zeitpunkt T und Bindungsdauer von h .

$$r(T,T+h)^{Ask}$$
 ... Der herrschende Ask Kassazins $r(T,t+h)^{Ask}$ zum Zeitpunkt T und Bindungsdauer von h .

... Ausgleichszahlung. Diesen Betrag zahlt der Käufer (Long) an Verkäufer (Short). Wenn dieser Betrag negativ ist heißt das dass der Käufer eine Zahlung bekommt.

Bid Forward Rate (Verkäufer, Short) a)
$$f(T,T+h)^{Bid} = \frac{1}{h} \cdot \left(\frac{P_{T,MMY}^{Ask}}{P_{T+h,MMY}^{Bid}} - 1\right)$$

Ask Forward Rate (Käufer, Long) b) $f(T,T+h)^{Ask} = \frac{1}{h} \cdot \left(\frac{P_{T,MMY}^{Bid}}{P_{T+h,MMY}^{Ask}} - 1\right)$

Ausgleichszahlung wenn Käufer c) $AZ = Nom \cdot \left(h \cdot \frac{f(T,T+h)^{Ask} - r(T,T+h)^{Ask}}{1+h \cdot r(t,T+h)^{Ask}}\right)$

Ausgleichszahlung wenn Verkäufer d) $AZ = Nom \cdot \left(h \cdot \frac{f(T,T+h)^{Bid} - r(T,T+h)^{Bid}}{1+h \cdot r(t,T+h)^{Ask}}\right)$

Devisenmärkte

Wechselkurse sind üblicherweise in der Form "Zielwährung"/"Referenzwährung"=X angegeben. Dabei ist die Quotierung so zu lesen: 1 Stück "Zielwährung" kann man gegen X Stück "Referenzwährung" tauschen.

Die Amerikanische Quotierung gibt USD als Referenzwährung an, wobei die Europäische Quotierung USD als Zielwährung angibt.

Amerikanische Quotierung	Europäische Quotierung			
EUR/USD	USD/JPY			
AUD/USD	USD/CAD			
NZD/USD	USD/CHF			
GBP/USD	USD/SEK			
	USD/NOK			

FX Forward

 $S_{0,Ziel/Ref}^{Bid}$... Kassa- (d.h. zu T=0) Bid-Wechselkurs eines Währungspaares. Diesen Kurs

erhält ein MU der die Zielwährung gegen die Referenzwährung tauschen

möchte.

 $S_{0,Ziel/Ref}^{Ask}$... Kassa- (d.h. zu T=0) Ask-Wechselkurs eines Währungspaares. Diesen

Kurs erhält ein MU der die Referenzwährung gegen die Zielwährung tau-

schen möchte.

Bid FX Forward Wechselkurs a) $F(T)_{Ziel/Ref}^{Bid} = S_{0,Ziel/Ref}^{Bid} \cdot \frac{P_T^{Ask,Ziel}}{P_T^{Bid,Ref}}$

Ask FX Forward Wechselkurs b) $F(T)_{Ziel/Ref}^{Ask} = S_{0,Ziel/Ref}^{Ask} \cdot \frac{P_T^{Bid,Ziel}}{P_T^{Ask,Ref}}$

Bid FX Forward Quotierung in c) $Ziel/Ref_T^{Bid} = (F(T)_{Ziel/Ref}^{Bid} - S_{0,Ziel/Ref}^{Bid}) \cdot 10~000$ Ticks

Ask FX Forward Quotierung in d) $Ziel/Ref_T^{Ask} = (F(T)_{Ziel/Ref}^{Ask} - S_{0,Ziel/Ref}^{Ask}) \cdot 10~000$ Ticks

Arbitrage

Solange $Replikation^{Bid} \leq Quotierung^{Ask}$ und $Quotierung^{Bid} \leq Replikation^{Ask}$ gilt, kann keine Arbitrage erzielt werden.

D.h. Arbitrage kann nur erzielt werden falls $Replikation^{Bid} > Quotierung^{Ask}$ oder $Quotierung^{Bid} > Replikation^{Ask}$ gilt.

Duration

YTM ... Yield To Maturity, stellt eine Renditekennzahl für eine Anleihe dar. Bei flacher

Zinskurve ist YTM genau der flache Zins.

PV ... Present Value, heutiger (t=0) Wert von abdiskontierten Zahlungsflüssen: $PV = \nabla^{T} \cdot Z_{+} P_{+} \text{ wobei } Z_{+} \text{ einen Zahlungsfluss zu einen bestimmten Zeit-$

 $PV = \sum_{t=1}^{T} Z_t \cdot P_t$, wobei Z_t einen Zahlungsfluss zu einen bestimmten Zeit-

punkt darstellt.

Dollar Duration (DD) a) $DD = \frac{1}{1 + YTM} \cdot \sum_{t=1}^{T} t \cdot Z_t \cdot (1 + YTM)^{-t}$

Basis Point Value (BPV) b) BPV = DD/10~000

Modified Duration (MD) c) MD = DD/PV

Swapsbewertung

Bei Swapsbewertung gibt es 3 verschiedene Tageszählungskonventionen jenachdem ob gerade

- 1. Jahresbruchteil der ausbezahlten Coupons des **Floating Legs** (hängt von Währung ab, bei EUR **act/360**, bei GBP **act/365**),
- 2. Jahresbruchteil der ausbezahlten Coupons des Fixed Legs (30/360 oder act/365) oder
- 3. Diskontfaktoren

gerade berechnet werden.

Diskontfaktoren in Swapsbewertung

Typischerweise liegt zwischen der Bewertungszeitpunkt (BZ) und nächster Zahlung (NZ) weniger als ein Jahr, dafür wird die **act/360** Konvention angewandt:

$$T_{NZ} = \frac{Anzahl\ der\ Tage\ bis\ zur\ nächsten\ Zahlung}{360}.$$

Bei Floating Leg gibt es nur eine einzige zukünftige Zahlung der zur Bewertung einfliesst.

Bei **Fixed Leg** sind die Couponzahlungen typischerweise jährlich, d.h. sie haben eine ganzjährige Entfernung zur NZ. Für Überjährige Zahlungen wird folgende Tageszählung angewandt:

$$T_{NZ+n} = T_{NZ} + n$$

wobei n die ganzjährige Entfernung zu NZ ist. Für eine allgemeine Formel $n \in \{0,1,2,...,N\} \subset \mathbb{N}$ wobei N die Anzahl von überjährigen Zahlungsterminen ist. $T_{NZ}^{Floating\ Leg}$ und $T_{NZ}^{Fixed\ Leg}$ können unterschiedlich sein.

Z^{Floating Leg} ... Zum letzten **Zinsfixierungszeitpunkt (ZFZ)** ermittelte Euriborsatz

S ... Vereinbarte Swaprate, d.h. die Zahlungen des Fixed Leg.

Tageszählung in Diskontfaktoren	a)	$T_{NZ+n} = T_{NZ+n} + n$
Diskontfaktoren in Swapsbewertung	b)	$P_{T_{NZ+n}} = rac{1}{(1+R)^{T_{NZ+n}}}$
Barwert von Floating Leg	c)	$PV^{Floating\ Leg} = 100 \cdot (1 + Z^{Floating\ Leg} \cdot T^{NZ-ZFZ}_{act/360}) \cdot P_{T^{Floating\ Leg}_{NZ}}$
Barwert von Fixed Leg	d)	$PV^{Fixed\ Leg} = 100 \cdot \left[S \cdot \left(\sum_{n=0}^{N} P_{T_{NZ+n}^{Fixed\ Leg}} ight) + P_{T_{NZ+N}^{Fixed\ Leg}} ight]$
Barwert von Payer Swap	e)	$PV^{Payer\ Swap} = PV^{Floating\ Leg} - PV^{Fixed\ Leg}$
Barwert von Receiver Swap	f)	$PV^{Receiver\ Swap} = PV^{Fixed\ Leg} - PV^{Floating\ Leg}$

Ermittlung der Zinsstruktur aus Swaprates

 S_T ... Swaprate für die Laufzeit T

Diskontfaktor P_T via Bootstrapping a) $P_T = \frac{100 - S_T \cdot \sum_{t=1}^{T-1} P_t}{100 + S_T}$

2 Nichtlineare Finanzinstrumente

Futures/Forwards

 r_T^d ... Diskreter p.a. Zins für Laufzeit T.

 r_T^s ... Stetiger (kontinuerliche) p.a. Zins für Laufzeit T.

 S_0 ... Kassakurs des Basisobjekts.

I ... Barwert künftiger Ausschüttungen des Basisobjekts.

q^d ... Diskrete Dividendenrendite q.

q^s ... Stetige (kontinuerliche) Dividendenrendite q.

K ... In Vergangenheit abgeschlossene Terminkurs K.

 Q_A ... Größe der Position die abgesichert werden soll.

 Q_F ... Größe des Futureskontraktes die zur Absicherung verwendet wird.

 N^* ... Optimale Kontraktanzahl die zur Absicherung verwendet wird.

Terminkurs (TK) bei diskreter Verzinsung (d.V.)	a)	$F_0^d = S_0 \cdot (1 + r_T^d)^T$
Terminkurs (TK) bei stetiger (kontinuerlicher) Verzinsung (s.V.)	b)	$F_0^s = S_0 \cdot e^{r_T^s \cdot T}$
TK bei d.V. und mit Berücksichtigung von I	c)	$F_0^d = (S_0 - I) \cdot (1 + r_T^d)^T$
TK bei s.V. und mit Berücksichtigung von I	d)	$F_0^s = (S_0 - I) \cdot e^{r_T^s \cdot T}$
TK bei d.V. und mit Berücksichtigung von q	e)	$F_0^d = S_0 \cdot (1 + r_T^d - q^d)^T$
TK bei s.V. und mit Berücksichtigung von q	f)	$F_0^s = S_0 \cdot e^{(r_T^s - q^s) \cdot T}$
Wert eines Long-Forwards K heute	g)	$f_0^{K,L} = (F_0 - K) \cdot e^{-r_T^s \cdot T}$
Wert eines Short-Forwards K heute	h)	$f_0^{K,S} = (K - F_0) \cdot e^{-r_T^s \cdot T}$
Hedge-Ratio	i)	$h^* = ho_{S,F} \cdot rac{\sigma_S}{\sigma_F} = rac{Cov(r_S, r_F)}{\sigma_F^2}$
Kontraktanzahl die zur Absicherung verwendet	j)	$N^* = h^* \cdot \frac{Q_A}{Q_A}$

wird

 Q_F

Optionen

Risikoneutrale Wahrscheinlichkeit

a)
$$p = \frac{e^{r_T^s \cdot T} - d}{u - d}$$

Optionspreis nach Binomialformel

b)
$$f = \frac{p \cdot f_u + (1 - p) \cdot f_d}{\rho^{r_T^s \cdot T}}$$

Call-Optionspreis nach Black-Scholes Modell c) $c = S_0 \cdot N(d_1) - K \cdot e^{-r_T^s \cdot T} \cdot N(d_2)$

c)
$$c = S_0 \cdot N(d_1) - K \cdot e^{-r_T^s \cdot T} \cdot N(d_2)$$

Put-Optionspreis nach Black-Scholes Modell

d)
$$p = K \cdot e^{-r_T^s \cdot T} \cdot N(-d_2) - S_0 \cdot N(-d_1)$$

Zwischenrechnung: d₁

e)
$$d_1 = \frac{ln(\frac{S_0}{K}) + (r_T^s + \frac{\sigma^2}{2}) \cdot T}{\sigma \cdot \sqrt{T}}$$

Zwischenrechnung: d₂

f)
$$d_2 = \frac{ln(\frac{S_0}{K}) + (r_T^s - \frac{\sigma^2}{2}) \cdot T}{\sigma \cdot \sqrt{T}} = d_1 - \sigma \cdot \sqrt{T}$$

Delta einer Call-Option

g)
$$\Delta_c = N(d_1)$$

Delta einer Put-Option

h)
$$\Delta_p = N(d_1) - 1$$

Gamma einer Option

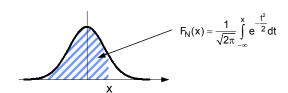
i)
$$\Gamma = \frac{\frac{1}{\sqrt{2 \cdot \pi}} \cdot e^{-d_1^2/2 - q \cdot T}}{S_0 \cdot \sigma \cdot \sqrt{T}}$$

Put-Call-Parität

$$j) \quad c + K \cdot e^{-r_T^s \cdot T} = p + S_0$$

Black-Scholes-Merton Modell

Wert des Unternehmens (bzw. deren Assets)


Nominale des Fremdkapitals (modelliert hierbei durch eine Nullkuponanleihe) В

Volatilität der Assets σ

Wert des Eigenkapitals	a) $E = V \cdot N(d_1) - B \cdot e^{-r_T^s \cdot T} \cdot N(d_2)$
Wert des Fremdkapitals	b) $D = V - E$
d ₁ und d ₂	c) $d_1 = \frac{ln(\frac{V}{B}) + (r_T^s + \frac{\sigma^2}{2}) \cdot T}{\sigma \cdot \sqrt{T}}$ $d_2 = d_1 - \sigma \cdot \sqrt{T}$

Tabelle der Standardnormalverteilung (μ = 0, σ = 1)

Ablesebeispiel: $F_N(2,36) = 0,990863$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,500000	0,503989	0,507978	0,511967	0,515953	0,519939	0,523922	0,527903	0,531881	0,535856
0,10	0,539828	0,543795	0,547758	0,551717	0,555670	0,559618	0,563559	0,567495	0,571424	0,575345
0,20	0,579260	0,583166	0,587064	0,590954	0,594835	0,598706	0,602568	0,606420	0,610261	0,614092
0,30	0,617911	0,621719	0,625516	0,629300	0,633072	0,636831	0,640576	0,644309	0,648027	0,651732
0,40	0,655422	0,659097	0,662757	0,666402	0,670031	0,673645	0,677242	0,680822	0,684386	0,687933
0,50	0,691462	0,694974	0,698468	0,701944	0,705402	0,708840	0,712260	0,715661	0,719043	0,722405
0,60	0,725747	0,729069	0,732371	0,735653	0,738914	0,742154	0,745373	0,748571	0,751748	0,754903
0,70	0,758036	0,761148	0,764238	0,767305	0,770350	0,773373	0,776373	0,779350	0,782305	0,785236
0,80	0,788145	0,791030	0,793892	0,796731	0,799546	0,802338	0,805106	0,807850	0,810570	0,813267
0,90	0,815940	0,818589	0,821214	0,823814	0,826391	0,828944	0,831472	0,833977	0,836457	0,838913
1,00	0,841345	0,843752	0,846136	0,848495	0,850830	0,853141	0,855428	0,857690	0,859929	0,862143
1,10	0,864334	0,866500	0,868643	0,870762	0,872857	0,874928	0,876976	0,878999	0,881000	0,882977
1,20	0,884930	0,886860	0,888767	0,890651	0,892512	0,894350	0,896165	0,897958	0,899727	0,901475
1,30	0,903199	0,904902	0,906582	0,908241	0,909877	0,911492	0,913085	0,914656	0,916207	0,917736
1,40	0,919243	0,920730	0,922196	0,923641	0,925066	0,926471	0,927855	0,929219	0,930563	0,931888
1,50	0,933193	0,934478	0,935744	0,936992	0,938220	0,939429	0,940620	0,941792	0,942947	0,944083
1,60	0,945201	0,946301	0,947384	0,948449	0,949497	0,950529	0,951543	0,952540	0,953521	0,954486
1,70	0,955435	0,956367	0,957284	0,958185	0,959071	0,959941	0,960796	0,961636	0,962462	0,963273
1,80	0,964070	0,964852	0,965621	0,966375	0,967116	0,967843	0,968557	0,969258	0,969946	0,970621
1,90	0,971284	0,971933	0,972571	0,973197	0,973810	0,974412	0,975002	0,975581	0,976148	0,976705
2,00	0,977250	0,977784	0,978308	0,978822	0,979325	0,979818	0,980301	0,980774	0,981237	0,981691
2,10	0,982136	0,982571	0,982997	0,983414	0,983823	0,984222	0,984614	0,984997	0,985371	0,985738
2,20	0,986097	0,986447	0,986791	0,987126	0,987455	0,987776	0,988089	0,988396	0,988696	0,988989
2,30 2,40	0,989276 0,991802	0,989556 0,992024	0,989830 0,992240	0,990097 0,992451	0,990358 0,992656	0,990613 0,992857	0,990863	0,991106 0,993244	0,991344 0,993431	0,991576 0,993613
2,40	0,993790	0,992024	0,992240	0,992431	0,992030	0,992637	0,993033	0,993244	0,995060	0,995201
2,60	0,995339	0,995473	0,995603	0,995731	0,995855	0,995975	0,996093	0,996207	0,996319	0,996427
2,70	0,996533	0,996636	0,996736	0,996833	0,996928	0,997020	0,997110	0,997197	0,997282	0,997365
2,80	0,997445	0,997523	0,997599	0,997673	0,997744	0,997814	0,997882	0,997948	0,998012	0,998074
2,90	0,998134	0,998193	0,998250	0,998305	0,998359	0,998411	0,998462	0,998511	0,998559	0,998605
3,00	0,998650	0,998694	0,998736	0,998777	0,998817	0,998856	0,998893	0,998930	0,998965	0,998999
3,10	0,999032	0,999064	0,999096	0,999126	0,999155	0,999184	0,999211	0,999238	0,999264	0,999289
3,20	0,999313	0,999336	0,999359	0,999381	0,999402	0,999423	0,999443	0,999462	0,999481	0,999499
3,30	0,999517	0,999533	0,999550	0,999566	0,999581	0,999596	0,999610	0,999624	0,999638	0,999650
3,40	0,999663	0,999675	0,999687	0,999698	0,999709	0,999720	0,999730	0,999740	0,999749	0,999758
3,50	0,999767	0,999776	0,999784	0,999792	0,999800	0,999807	0,999815	0,999821	0,999828	0,999835
3,60	0,999841	0,999847	0,999853	0,999858	0,999864	0,999869	0,999874	0,999879	0,999883	0,999888
3,70	0,999892	0,999896	0,999900	0,999904	0,999908	0,999912	0,999915	0,999918	0,999922	0,999925
3,80	0,999928	0,999930	0,999933	0,999936	0,999938	0,999941	0,999943	0,999946	0,999948	0,999950
3,90	0,999952	0,999954	0,999956	0,999958	0,999959	0,999961	0,999963	0,999964	0,999966	0,999967
4,00	0,999968	0,999970	0,999971	0,999972	0,999973	0,999974	0,999975	0,999976	0,999977	0,999978
4,10	0,999979	0,999980	0,999981	0,999982	0,999983	0,999983	0,999984	0,999985	0,999985	0,999986
4,20	0,999987	0,999987	0,999988	0,999988	0,999989	0,999989	0,999990	0,999990	0,999991	0,999991
4,30	0,999991	0,999992	0,999992	0,999993	0,999993	0,999993	0,999993	0,999994	0,999994	0,999994
4,40	0,999995	0,999995	0,999995	0,999995	0,999995	0,999996	0,999996	0,999996	0,999996	0,999996
4,50	0,999997	0,999997	0,999997	0,999997	0,999997	0,999997	0,999997	0,999998	0,999998	0,999998